If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-30x+166=0
a = 1; b = -30; c = +166;
Δ = b2-4ac
Δ = -302-4·1·166
Δ = 236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{236}=\sqrt{4*59}=\sqrt{4}*\sqrt{59}=2\sqrt{59}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{59}}{2*1}=\frac{30-2\sqrt{59}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{59}}{2*1}=\frac{30+2\sqrt{59}}{2} $
| 19.23+(2212+x)=99123+23123918348902384092384023 | | 19.23+(2212+x)=99123-23123918348902384092384023 | | 19.23+(2212+x)=99123-2393 | | 7c-10=45 | | 5(m-1)+3(m-7)=0 | | 0.015x+x=7000 | | .0015x+x=7000 | | 78-6x=90-x | | 1600*x=1.25*800 | | 3z+6z+3z=180 | | 3x^2-15x+32=0 | | 3x^2-15x-32=0 | | 3x^2-15x+28=0 | | -u+223=9 | | w^2-42w=0 | | 4y=-24y | | 6/5x-7/4=8(3/5x-2/4 | | 6x+7+x-3+3x+20=180 | | 4(5x+3)=4(5+4x)+3(1+2x) | | 4-2(b+1)=4(5b-6)+1 | | 20(x+1)=15(x+1) | | 4y+8=5(4y+3) | | 4-9x=74-2x | | 3x+2(2x-3)=15 | | 5m-2(2m-7)=2(3m-1)+7/2 | | x=3600+0.8x | | y4=14.641 | | 8(y+5)=75 | | 21x-7=-5+18x | | 7d+30=86 | | 2(4x-9)=16-3x | | 6t+100=154 |